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Abstract— The autonomous landing of an unmanned aerial
vehicle (UAV) is still an open problem. Previous work focused
on the use of hand-crafted geometric features and sensor-data
fusion for identifying a fiducial marker and guide the UAV
toward it. In this article we propose a method based on deep
reinforcement learning that only requires low-resolution images
coming from a down looking camera in order to drive the
vehicle. The proposed approach is based on a hierarchy of Deep
Q-Networks (DQNs) that are used as high-end control policy
for the navigation in different phases. We implemented various
technical solutions, such as the combination of vanilla and
double DQNs trained using a form of prioritized buffer replay
that separates experiences in multiple containers. The optimal
control policy is learned without any human supervision,
providing the agent with a sparse reward feedback indicating
the success or failure of the landing. The results show that
the quadrotor can autonomously land on a large variety of
simulated environments and with relevant noise, proving that
the underline DQNs are able to generalise effectively on unseen
scenarios. Furthermore, it was proved that in some conditions
the network outperformed human pilots.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are already deployed
in various situations such as surveillance [1], agriculture
[2], [3], mapping [4], inspection [5] and search and rescue
[6]. Recently, they have been taken into account for the
transportation and delivery of packages and goods. In this
case, one of the most delicate phase is the identification of
a fiducial marker and the descending maneuver to ground
level. Landing must be done in a limited amount of time
and space, using high precision sensing techniques for an
accurate control and path planning. Until now this task was
performed using hand-crafted features analysis and external
sensors (e.g. ground cameras, range scanners, differential
GPS, etc.). In this paper we propose instead a different
approach, inspired by a recent breakthrough achieved with
Deep Reinforcement Learning (DRL) [7]. Our method is
based on a hierarchy of Deep Q-Networks (DQNs) taking
in input a sequence of low-resolution images acquired by
a down-looking camera mounted on the UAV. The DQNs
directly communicate with the closed loop flight controller
acting as an high level navigator that identifies the position
of the marker and moves the drone toward it. The most
remarkable advantage of DRL is the total absence of human
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Fig. 1: Components of the proposed landing system. A first
DQN takes care of the marker detection on the xy-plane. The
second DQN handles the descending maneuver from 20 to

1.5 meters. The last module is a closed loop controller that
takes control from 1.5 meter to ground level.

supervision during the learning process. The quadrotor can
autonomously learn what is the best action to perform in
order to land.

The applicability of DRL in robotics is not straightfor-
ward. So far, the research focused on deterministic envi-
ronment, such as the Atari game suite [7], and the Doom
platform [8]. The success of DRL in complex robotics tasks
has been limited. In order to tackle the landing problem we
introduced different technical solutions. First, we adopted a
divide-and-conquer approach splitting the problem in two
sub-tasks: landmark detection and vertical descent. Both
tasks are addressed by two independent DQNs that are able
to call each other through an internal trigger. We encountered
different problems, such as the overestimation of the utilities
and the reward sparsity. In order to face the overestimation
we adopted the double DON architecture proposed in [9].
To solve the reward sparsity we developed a new form
of prioritized experience replay called partitioned buffer
replay. Using a partitioned buffer replay it is possible to
split experiences based on their relevance and guarantee the
presence of rare transitions in the training batch. An overview
of the system is shown in Figure 1.

The overall contribution of this article can be summarized
in three points. (i) As far as we know, this work is the first
to use an unsupervised learning approach in autonomously
landing. The training phase has been completed using low-
resolution images, without any direct human supervision or
hand-crafted features. For this reason, this method represents
a significant improvement compared to previous research. (ii)
We introduce new technical solutions such as a hierarchy of
deep Q-networks able to autonomously trigger each other,
and a new form of prioritized buffer replay. (iii) The pro-
posed method has been used to train a commercial quadrotor



in a variety of simulated environments. The testing phase
showed a relevant generalisation on unseen grounds and an
overall performance comparable with human pilots.

II. RELATED WORK

In the following section we offer an overview of the
research that has been done in autonomous landing of UAVs.
This section helps to compare our method with previous
work. A complete description of all the methods available
is out of scope so we refer the reader to recent surveys
[10], [11]. The landing problem has been investigated from
different points of view and using various techniques. For
simplicity we group all the different methods in three classes:
sensor-fusion systems, device-assisted systems, vision-based
systems.

Combining data from multiple sensors is a common ex-
pedient used to improve the performances. This is the main
strategy used in sensor-fusion systems. An example is offered
in [12]. In this article the cameras, GPS and differential
GPS data are gathered together for estimating the UAV’s
relative pose with respect to a landing pad. Similarly, [13]
combined data from a monocular camera, odometry and
inertial unit to estimate the position of the vehicle in order
to land on a moving vessel. In [14] camera and IMU are
integrated to build a three dimensional model of the terrain
that allowed identifying a safe landing area. A ground-based
multisensor fusion system has been proposed in [15]. The
system included a pan-tilt unit, an infrared camera and an
ultra-wideband radar used to center the UAV in a recovery
area.

Device-assisted methods use sensors located on the ground
to precisely estimate the pose of the UAV. In [16] the authors
proposed a vision system based on two parallel cameras in
order to allow the vehicle to land on a runway. Infra-red
parallel lamps were adopted in [17]. The camera on the
vehicle was equipped with optical filters sensible to infra-
red lights and the incoming video stream was processed by
a control loop for pose estimation purposes. Finally, a Chane-
Vase based approach has been proposed in [18] for ground
stereo-vision detection.

The vision-based approaches comprise those techniques
that rely on the analysis of vision features to identify
and extract the landing pad. An example is given in [19].
The authors used a series of concentric circles to make
the marker visible at different distances and resolutions. A
similar idea, adopted in [20], relies on parallel computation
performed by an on-board GPU for obtaining real-time pose
estimation. In [21] a seven-stage vision algorithm was able
to reconstruct the international H-shape landing pattern when
partially occluded. Finally, [22] and [23] offer a solution to
autonomously land on a moving ground platform.

Previous work presents some limitations of which we are
going to describe. Sensor-fusion methods rely on expensive
sensors that cannot be easily integrated on low-cost or
commercial drones. Moreover, most of these methods use
GPS signal which is often not available in cluttered real-
world scenarios. The device-assisted approaches offer a good
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Fig. 2: Representation of landmark detection (a) and vertical
descent (b). In (a) the drone has to align to the ground
marker. In (b) the drones has to reduce the distance from
the marker vertical movements.

pose estimation of the UAV during all the landing manoeuvre
thanks to the use of external sensors. On the other hand, this
represents a limitation because it is not possible to land in an
unknown environment where such devices are not available.
Vision-based methods only rely on sensors mounted on-
board, more specifically on cameras. Unfortunately, it is
often difficult to identify low-level features, especially when
the pad is distant, partially obscured or blurred.

The proposed approach aims to address most of the
aforementioned problems in a novel way. Our method only
relies on a single on-board camera, and it does not need
additional sensors or external devices. The use of DQN
improves drastically the marker detection and is more robust
to projective transformations and occlusions. While we make
no claim that our method is better than the existing ones, we
believe that our policy is at least competitive with the best
models in the literature and highlight the potential of the
DRL in UAV navigation.

III. PROPOSED METHOD

In this section we describe the landing problem in re-
inforcement learning terms and we present the technical
solutions used in our method.

A. Problem definition and notation

As discussed in Section II, there is limited work which
attempted to tackle the landing problem using reinforcement
learning and in particular DRL. The use of UAVs introduces
many complications. Drones move in a three-dimensional
space which is expensive to explore. This additional spatial
dimension introduces partial observability and occlusions,
moreover it causes complications due to perspective variance.
The agent can only view a small portion of the environment
and it has to deal with projective transformations. For all
these reasons, applying DQN to the landing problem is
challenging. In previous research, DQN obtained high per-
formances in two-dimensional games where all the problems
mentioned above were attenuated or absent.



Here we consider the landing problem as divided in
two problems: landmark detection and vertical descent. The
landmark detection requires the UAV to explore the xy-plane
through horizontal shifts, in order to align itself with the
marker. In the vertical descent phase the quadrotor must
decrease its altitude through vertical and lateral movements
to keep the marker centred within the camera’s field of view.
A graphical representation of the two phases is reported in
Figure 2.

From a formal point of view, we can briefly define
reinforcement learning as the problem faced by an agent that
learns through trial-and-error interactions with a dynamic
environment [24]. In our specific case, the landing problem
is modelled as Markov Decision Processes (MDPs). At each
time step ¢ the agent receives the state s;, performs an action
a; sampled from the action space A, and receives a reward
ry given by a reward function R(s;,a;). The action brings
the agent to a new state s;4; in accordance with the envi-
ronmental transition model T'(s;y1|s¢, at). In the particular
case faced here the transition model is not given (model
free). The goal of the agent is to maximize the discounted
cumulative reward called return R = Zzozo 7’“7}“, where
v is the discount factor. Given the current state the agent
can select an action from the internal policy © = P(als). In
off-policy learning the prediction of the cumulative reward
can be obtained through an action-value function Q7 (s, a)
adjusted during the learning phase in order to approximate
Q*(s,a), the optimal action-value function. In simple cases
@ can be represented in tabular form. The tabular approach
is generally inadequate to model a large state space due
to combinatorial explosion. To solve the problem, function
approximation (e.g. artificial neural networks) can be used to
represent the action-value function. In this work we use two
Convolutional Neural Networks (CNNs) for function approx-
imation following the approach presented in [7]. Recently,
CNNs achieved outstanding results in a large variety of
problems (see [25] for a review). In the work here presented,
the CNNs receive in input a stack of four 84 x 84 grey-scale
images acquired by a down looking camera. The images
are then processed by three convolutional layers for feature
extraction and two fully connected layers. An example of
the input images and the output of the first layer of kernel
is provided in Figure 3. As activation function we used the
rectified linear unit [26]. The first convolution has 32 kernels
of 8 x 8 with stride of 2, the second layer has 64 kernels of
4 x 4 with strides of 2, the third layer convolves 64 kernels
of 3 x 3 with stride 1. The fourth layer is a fully connected
layer of 512 units followed by the output layer which has
a unit for each valid action (backward, right, forward, left,
stop, descend, land). Depending on the simulation, we used
a sub-set of the total actions available, we refer the reader
to Section IV for additional details.

In order to identify the problems that can affect and
compromise the learning, it is important to carefully an-
alyze the two phases characterizing the overall landing
manoeuvre. The landmark detection phase is performed at
a fixed altitude. The UAV aligns its frame with the marker

Fig. 3: The greyscale images given as input to the DQN
and the feature map generated by the kernels in the first
convolutional layer.

through planar shifts. This expedient significantly reduces the
complexity of the task and does not have any impact at the
operational level. To adjust 6, the parameters of the DQN,
in this phase we used the following loss function:

Li(0:) = B areyv oy | (Vi = Q(s,a:6,)%| (1)

with D = (ey,...,e;) being a dataset of experiences e
et = (8t,at,7, S¢41) used to uniformly sample a batch at
each iteration 7. The network Q(s, a;6;) is used to estimate
actions at runtime, whereas Y; is the target which is defined
as follows:

Yi =7 +ymaxQ(s',a;6]) )

the network Q(s’,a’; 6, ) is used to generate the target and
is constantly updated. The use of the target network is a trick
that improves the stability of the method. The parameters 6
are updated every C' steps and synchronized with 6. In
the standard approach the experiences in the dataset D are
collected in a preliminary phase using a random policy. The
dataset D is also called buffer replay and it is a way to



randomize the samples breaking the correlation and reducing
the variance [27].

The vertical descend phase is a form of Blind Cliffwalk
[28] where the agent has to take the right action in order to
progress through a sequence of IV states. At the end of the
walk the agent can obtain a positive or a negative reward. The
intrinsic structure of the problem makes extremely difficult
to obtain a positive reward because the target-zone is only a
small portion of the state space. The consequence is that the
buffer replay does not contain enough positive experiences,
making the policy unstable. To solve this issue we use
a form of buffer replay called partitioned buffer replay,
that discriminates between rewards and guarantees a fair
sampling between positive, negative and neutral experiences.
We are going to describe the partitioned buffer replay in
Section III-B. Another issue connected with the reward
sparsity is a well known problem called overestimation
[29]. During a preliminary research we observed that this
phenomenon arose in the vertical descent phase. A solution
to overestimation has been recently proposed and has been
called double DQN [9]. The target estimated through double
DQON is defined as follows:

YV =r+~ Q(s' argmax Q(s',d;6;);6;) 3)

Using this target instead of the one in Equation 2 the diver-
gence of the DQN action distribution is mitigated resulting
in faster convergence and increased stability.

B. Partitioned buffer replay

Markov Decision Processes characterized by a sparse and
delayed reward make difficult for an agent to obtain a posi-
tive feedback. This situation leads to unbalanced experiences
within the buffer replay. For instance, neutral experiences
are sampled more frequently compared to positive and
negative ones. To solve this issue has been proposed to
divide the experiences in two buckets with different priority
[30]. Our approach is an extension of this method to K
buckets. Another form of prioritized buffer replay has been
proposed in [28], in which the authors suggested to sample
important experiences more frequently. The prioritized replay
estimates a weight for each experience based on the temporal
difference error. Experiences are sampled with a probability
proportional to the weight. The limitation of this form of
prioritization is that it introduces additional overhead that
may not be justified for applications were there is a clear
distinction between positive and negative rewards. Moreover,
this method requires O(log N) to update the weights in the
priority queue.

In Section III-A we defined D = (ey,...,e;) being a
dataset of experiences e = (s,a,r,s’) used to uniformly
sample a batch at each iteration i. To create a partitioned
buffer replay we have to divide the reward space in K
partitions:

R=R(s,a) »Im R =R;U...URg 4)

For any experience e; we associate its reward r; = 7(e;)
and we define the K'th buffer replay:

DK:{(el,...,eN) Tr1,., TN ERK} 5)

The batch used for training the policy is assembled picking
experiences from each one of the K datasets with a certain
fraction p € {p1, ..., px }-

In our particular case we have K = 3, meaning that we
have three datasets with DT containing experiences having
positive rewards, D~ containing experiences having negative
rewards, and D~ for experiences having neutral rewards. The
fraction of experiences associated to each one of the dataset
is defined as p™, p~, and p™.

C. Hierarchy of DQNs

The method we propose uses a hierarchy of DQNs for
addressing the different phases involved in the landing. Sim-
ilarly to a finite-state machine, the global policy is divided
into sub-modules each one governed by a standalone DQN.
The networks are able to automatically call each other in
specific portions of the state space. The advantages of this
method are twofold. On one hand we reduce the complexity
of the task with a divide-and-conquer approach. On the
other hand, the use of function approximation is confined in
specific sandboxes making their use in robotic applications
safer.

The overall landing problem can be described by a three-
stages process: landmark detection, descend manoeuvre, and
touchdown. We already described in Section III-A the first
two phases. The touchdown corresponds to gradually reduce
the motors power in the last few centimeters of the landing.
This article is focused only on the first two stages, repre-
senting the most complex parts of the landing procedure.
A graphical representation of a hierarchical state machine
is represented in Figure 1. The first DQN, responsible for
performing marker detection, is trained to receive a positive
reward when the trigger action was enabled within a target
area. A negative reward was instead given if the trigger
was activated outside the target area. The second network,
responsible for the vertical descent, is trained following the
same concept. Only once the two networks have been trained
is possible to assemble the state-machine pipeline.

IV. EXPERIMENTS

The following section aims to introduce the methodology
and the results obtained after training and testing the two
DQNs. Section IV-A is reserved to the methodology and
the results obtained in the landmark detection phase. In
Section IV-B is presented the second series of simulation
concerning the vertical descent phase. Both training and
testing are performed within the same simulator (Gazebo
7 and ROS Kinetic) using the same vehicle (Parrot AR
Drone 2). The simulator is a fork of the one used in [31]
and it is freely available on our repository'. Here it is
necessary to point out that the physics of the system made

Thttps://github.com/pulver22/QLAB
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Fig. 4: Illustration of the vehicle inertia. In (a) is represented
the oscillatory inertia for roll and pitch, which is visible
when the drone starts and stops. In (b) is represented the
direction of the drone moving in a straight line (dashed red)
and the diagonal trajectory acquired due to the addiction of
two forces (green arrows).

extremely challenging to apply DRL to the landing problem.
An oscillatory effect during accelerations and decelerations
made the drone swinging on the roll and pitch axes (Figure
4a). This effect generated artifacts in the image acquisition of
the down-looking camera. Moreover a summation of forces
effect introduced a substantial shift in the trajectory (Figure
4b). The shift increased the complexity of the action space
introducing an high variance. The DRL algorithm has to deal
with this source of noise.

A. First series of simulations

In the first series of simulations we trained and tested the
DQNs for the marker detection phase. We considered two
networks having the same structure and we trained them
in two different conditions. The first network was trained
with a uniform asphalt texture (DQN-single), whereas the
second network was trained with multiple textures (DQN-
multi). The ability to generalise to new unseen situations is
very important and it should be seriously taken into account
in the landing problem. Training the first network on a
single texture is a way to quantify the effect of a limited
dataset on the performance of the agent. In the DQN-multi
condition the networks were trained using seven different
groups of textures: asphalt, brick, grass, pavement, sand,
snow, soil (Figure 5). These networks should outperform the
ones trained in the condition with single texture.

To simplify the UAV movements we only allowed trans-
lation on the xy-plane. At each episode the drone started
at a fixed altitude of 20 m that was maintained for the
entire flight. This expedient was useful for two reasons:
it significantly reduced the state space to explore, and it
allowed visualizing the marker in most of the cases giving a
reference point for the navigation. In a practical scenario this
solution does not have any impact on the flight, the drone is
kept at a stable altitude and the frames are acquired regularly.
To stabilize the flight we introduced discrete movements,
meaning that each action was repeated for 2 seconds and then
stopped leading to an approximate shift of 1 meter similarly
to the no-operation parameter used in [7]. The frames from
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Fig. 5: Textures used during the training phase. Only a sub-
sample of the 91 textures is showed here. From top to bottom
there is: asphalt (a), brick (b), grass (c), pavement (d), sand
(e), snow (f), soil (g). In (h) is showed a sample of the test
set (left), the marker and corrupted marker (right).

the camera were acquired between two actions, when the
drone had a constant speed. This expedient helped stabilizing
convergence reducing perspective errors.

1) Methods: The training environment was represented by
a uniform texture of size 100 x 100 m with the landmark
positioned in the center. The environment contained two
bounding boxes. At the beginning of each episode the drone
was generated at 20 m of altitude inside the perimeter of the
larger bounding box (15 x 15 x 20 m) with a random position
and orientation. A positive reward of 1.0 was given when the
drone activated the trigger in the target-zone, and a negative
reward of -1.0 was given if the drone activated the trigger
outside the target-zone. A negative cost of living of -0.01 was
applied in all the other conditions. A time limit of 40 seconds
(20 steps) was used to stop the episode and start a new one.
In the DQN-multi condition the ground texture was changed
every 50 episodes and randomly sampled between the 71
available. The target and policy networks were synchronized
every 10000 frames. The agent had five possible actions
available: forward, backward, left, right, land-trigger. The
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Fig. 6: Bounding boxes for landmark detection (a) and
vertical descent (b). The drone is generated in the red box at
the beginning of each episode. The green box (target-zone)
gives the positive reward.

action was repeated for 2 seconds then the drone was stopped
and a new action was sampled. The buffer replay was filled
before the training with 4 x 10° frames using a random policy.
We trained the two DQNs for 6.5 x 10° frames. We used
an e-greedy policy with € decayed linearly from 1.0 to 0.1
over the first 5 x 10° frames and fixed at 0.1 thereafter. The
discount factor v was set to 0.99. As optimizer we used the
RMSProp algorithm [32] with a batch size of 32. The weights
were initialized using the Xavier initialization method [33].
The DQN algorithm was implemented in Python using the
Tensorflow library [34]. Simulations were performed on a
workstation with an Intel i7 (8 core) processor, 32 GB
of RAM, and the NVIDIA Quadro K2200 as graphical
processing unit. On this hardware the training took 5.2 days
to complete.

To test the performance of the policies we measured
the landing success rate of both DQN-single and DQN-
multi in a new environment using 21 unknown textures.
We also measured the performances of a random agent,
human pilots and the AR-tracker proposed in [35] on the
same benchmark. The random agent data has been collected
sampling the actions from a uniform distribution at each time
step. The human data has been collected using 7 volunteers.
The subjects used a space-navigator mouse that gave the
possibility to intuitively and naturally control the drone in
the three dimensions. In the landmark detection test the
subjects had to align the drone with the ground marker and
trigger the landing procedure when inside the target-zone. A
preliminary training allowed the subject to familiarize with
the task. After the familiarization phase the real test started.
The subjects performed five landing attempts for each one of
the 21 textures contained in the test set (randomly sampled).
A time limit was applied accordingly to the procedure used
for testing our algorithms. A negative reward was given when
the subjects triggered the landing outside the target-area.

2) Results: The results for both DQN-single and DQN-
multi show that the agents were able to learn an efficient
policy for maximizing the reward. In both conditions the
reward increased stably without any anomaly (Figure 7). The

accumulated reward for the DQN-single condition reaches
an higher value in the last iterations. The results of the
test phase are summarized in Figure 7 (top). The bar chart
compares the performances of the DQN-single, DQN-multi,
human subjects, random agent and the AR-tracker. The AR-
tracker has the highest reported landing success rate with an
overall accuracy of 95%, followed by the DQN-multi with
a value of 89%. The score obtained by the agent trained on
a single texture (DQN-signle) are significantly lower (38%).
The human performance is close to the DQN-multi (86%).
The performance on the different classes of textures shows
that the DQN-multi obtained top performances in most of
the environments. The DQN-single had good performances
only on two textures: asphalt and grass. We verified using
a two-sample t-test if the difference between DQN-multi
and human pilots was statistically significant. The results
showed that the difference is significant (t = 2.37, p < .05)
and the DQN outperformed humans. It is possible to further
analyze the DQN-multi policy observing the action-values
distribution in different states (Figure 8). When the drone
is far from the marker the DQN for landmark detection
penalizes the landing action. However when the drone is over
the marker this utility significantly increases triggering the
vertical descent state. In order to better compare the DQN-
multi with the AR-tracker, we performed an experiment
using the corrupted marker showed in Figure 5-h. We noted a
drop in performance from 94% to 0% in the the AR-tracker,
due to the failure of the underlying template matching
algorithm in detecting the corrupted marker at long distances.
Differently, the DQN-multi performed fairly well, with a
limited drop in performance from 89% to 81%.

B. Second series of simulations

In the second series of simulations we trained and tested
the DQNs specialized in the vertical descend. To encourage
a vertical descend during the e-greedy action selection we
sampled the action from a non-uniform distribution were
the descend action had a probability of p and the other
N actions a probability %. We used exploring-start to
generate the UAV at different altitudes and to ensure a wider
exploration of the state space. Instead of the standard buffer
replay we used the partitioned buffer replay described in
Section III-B. We trained two networks, the former in a
single texture condition (DQN-single) and the latter in multi-
texture condition (DQN- multi).

1) Methods: The training environment was represented by
a flat floor of size 100 x 100 m with the landmark positioned
in the center. The state-space in the vertical descend phase
is significantly larger than in the marker detection and
exploration is expensive. For this reason we reduced the
number of textures used for the training, randomly sampling
20 textures from the 71. We hypothesize that using the entire
training set lead to better performance. The action space
available was represented by five actions: forward, backward,
left, right, down. A single action was repeated for 2 seconds
leading to an approximate shift of 1 meter (constant speed
of 0.5 m/s). The descend action was performed at a lower
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Fig. 7: Results of the first series of simulations. Top: detec-
tion success rate. Bottom: accumulated reward per episode
for DQN-single (blue line) and DQN-multi (red line).

¥y« t >3 et >3 3 et =>3 et >3

Fig. 8: Snapshots representing the landmark detection. The
bottom bar is the utility distribution of the actions. The
trigger command has a negative utility (red bar) when the
drone is far from the marker.

speed of 0.25 m/s to reduce undesired vertical shifts. For the
partitioned buffer replay we chose p™ = 0.25, p~ = 0.25,
and p~ = 0.5, meaning that 8 positive experiences and 8
negative experiences were always guaranteed in the batch of
32. A time limit of 80 seconds (40 steps) was used to stop
the episode and start a new one. The drone was generated
with a random orientation inside a bounding box of size
3 x 3 x 20 m at the beginning of the episode. This bounding
box corresponds to the target area of the landmark detection
phase described in Section IV-A.1. A positive reward of
1.0 was given only when the drone entered in a target-
zone of size 1.5 x 1.5 x 1.5 m, centered on the marker.
If the drone descended below 1.5 meter outside the target-
zone a negative reward of -1.0 was given. A cost of living
of -0.01 was applied at each time step. The same hyper-
parameters described in Section IV-A.1 were used to train the
agent. In addition to the hardware mentioned in Section IV-
A.1, we also used a separate machine to collect preliminary
experiences. This machine is a multi-core workstation with

I DON-multi = Random Agent =1 AR-Tracker |

I DQN-single 1 Human

Success Rate
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Reward
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Fig. 9: Results of the second series of simulations. Top:
descending success rate. Bottom: accumulated reward per
episode for DQN-single (blue line) and DQN-multi (red
line).

32 GB of RAM and a GPU NVIDIA Tesla K-40.

Before the training, the buffer replay was filled using a
random policy with 105 neutral experiences, 5 x 10° negative
experiences and 6.2 x 10* positive experiences. We increased
the number of positive experiences using horizontal/vertical
mirroring and consecutive 90 degrees rotation on all the
images stored in the positive partition. This form of data
augmentation increased the total number of positive experi-
ences to 5 x 105,

The networks were tested on the same 21 unseen textures
used in the marker detection test. Performance of random
agent and human pilots has also been collected. The human
data has been obtained using a sample of 7 subjects. The
subjects had to adjust the vertical position of the drone
in order to move toward the marker and obtain a positive
reward. The same procedure described in Section IV-A.1 has
been used.

2) Results: The results achieved show that both the DQNSs
were able to learn the task. The accumulated reward per
episode showed in Figure 9 (bottom), increased stably in both
DQN-single and DQN-multi. The results of the test phase
are summarized in Figure 9 (top). The bar chart compares
the performances of the DQN-single, DQN-multi, human
subjects, random agent and an AR-tracker. Also in this case,
the AR-tracker has the highest success rate with an overall
accuracy of 98%. The DQN-multi has the same performance
obtained in the marker detection phase (89%). The human
pilots follow with a score of (87%). The DQN-single score
is significantly lower (43%) confirming that the size of the
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Fig. 10: Snapshots representing the vertical descent phase.
The bottom bar is the utility distribution of the actions. The
descend command has a negative utility (red bar) when the

drone is close to the ground but far from the marker.

training set is an important factor to take into account in
order to enhance performances. We performed a t-test to
verify if the performances of human pilots and the DQN-
multi were significant. The test showed that there is not a
significant difference between the two groups (! = 0.79,
n.s.). It is possible to further analyze the DQN-multi policy
observing the action-values distribution in different states
(Figure 10). When the drone is far from the marker the
DQN for landmark detection penalizes the landing action.
However when the drone is over the marker this utility
significantly increases triggering the landing. Also for the
descending phase we compared the performance of the DQN-
multi with the AR-tracker using a corrupted marker. This
experiment confirmed a drop in performance from 98% to
0% for the AR-tracker due to the failure of the underlying
template-matching algorithm. The DQN-multi, on the other
hand, proved to be more robust to marker corruption with a
limited drop in performance from 89% to 51%.

V. CONCLUSIONS AND FUTURE WORK

In this work we used DRL to realise a system for the
autonomous landing of a quadrotor on a static pad. The main
modules of the system are two DQNs that can control the
UAV in two delicate phases: landmark detection and vertical
descent. The two DQNs have been trained in different
environments and with relevant noise. We showed that the
system can achieve performances comparable with humans
and state-of-the-art AR-tracker in the marker detection and
in the vertical descent phases. Moreover we showed that
we can train robust networks for navigation in large three-
dimensional environments by training on multiple maps
with random textures. Future work should mainly focus on
bridging the reality gap. The reality gap is the obstacles that
makes it difficult to implement many robotic solutions in real
world. This is especially true for DRL where a large number
of episodes is necessary in order to obtain stable policies.
Recent research worked on bridging this gap using domain
transfer techniques. An example is domain randomization
[36], a method for training models on simulated images
that transfer to real images by randomizing rendering in the
simulator. In conclusion, the results obtained are promising
and show that it is possible to apply DQN to complex
problems such as the landing one. However further research
is necessary in order to reach stable policies which can
effectively work in a wide range of conditions.
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